

Welcome to Captain Shove’s documentation!

Captain Shove is a system for remote command execution for multiple projects via a central
frontend.

	Code:	https://github.com/mozilla/captain

	Documentation:	http://captain.readthedocs.org/

	Issue tracker:	https://github.com/mozilla/captain/issues

	IRC:	#capshove on irc.mozilla.org

	License:	Mozilla Public License v2

Contents:

	Overview

	Installing Captain and Shove

	Deploying a Project with Captain

	Contributing

	Mozilla Public License Version 2.0

Indices and tables

	Index

	Module Index

	Search Page

Overview

Captain Shove is a system for remote command execution for multiple projects via a central
frontend. Projects define a whitelist of acceptable commands. Users use the Captain web frontend to
execute commands on a remote machine running a Shove daemon. Captain then shows info about the
result of executing that command including the return code, console log and its current favorite
ice cream flavor.

Captain [https://github.com/mozilla/captain] is the frontend portion of the system, and is a Django [https://www.djangoproject.com/] project. Shove [https://github.com/mozilla/shove] is a process that
executes commands on the remote machine. The two systems communicate via RabbitMQ [http://www.rabbitmq.com/]; Captain sends
messages to Shove processes via queues, and Shove processes send the results and logs of command
executions back to Captain via queues.

Server Architecture

Since we (Mozilla) built it for our own setup, Captain Shove was designed with a few things in
mind:

	Servers are organized into clusters, and each cluster may host one or more projects.

	Each cluster has at least one “admin” node, which performs tasks like minifying CSS and JS or
pulling translation files during a deployment. Once these tasks are done, the admin node syncs
code on the other servers in the cluster that actually serve the site.

	Admin nodes perform commands for all the projects in the cluster.

	The commands we want to execute should be executed on the admin node; executing commands on each
individual application server is handled by another system (in our case, commander [https://github.com/oremj/commander]).

	There is a single RabbitMQ cluster that most admin nodes already connect to for other reasons.

In our setup, Captain lives in its own cluster, and Shove processes are installed on any admin node
that we want to run commands on. The project setup documentation has more info
on how to register an individual project with Captain.

Captain

Captain is a Django-based site that presents an interface for sending commands to Shove and showing
the results of those commands. Users log into Captain using Persona [https://persona.org/] and are given permission by
an administrator to run commands on certain projects registered with Captain.

Note

The command history and logs are visible to all users who can access the site; we run
Captain behind a VPN so the logs aren’t visible to the public.

Shove

The Shove process runs on the admin nodes for each cluster and is responsible for executing
commands it receives from Captain. The Shove configuration includes a dictionary that maps project
names to directories on the filesystem of the admin node. These directories are usually a checkout
of the project’s repository, and all commands are run with this directory as the working directory.

Shove will only run whitelisted commands; each project should have a whitelist stored in the
bin/commands.procfile relative to the project’s directory in the Shove configuration. A
procfile maps a command name to an actual shell command. When Shove receives an order, it looks up
the procfile for the requested project, and looks for a command matching the command name in the
order. If it finds one, it executes that command and sends the logs back to Captain.

Communication Flow

Captain and Shove communicate via RabbitMQ. Each instance of Shove creates a queue that it listens
to for commands. When you create a project in Captain, you give it the name of this queue, and
Captain will send commands for that project to the queue.

Once Shove has executed a command, it sends the return code and logs back to a log event queue
specified in the command it received. A process included in the Captain codebase listens to this
queue and updates Captain’s database with the results of the command when it receives these events.

The following is a diagram of the processes and queues involved with the system:

.-----------------. .-----------------------.
Captain Server		RabbitMQ
-----------------		-----------------------
.-----------.		+---------+
	Captain Log	<-+-- Reads log events --+------
	Process	
'-----------'		
		.-----------.
		.-->
.-----------.		
	Captain Web	--+--- Sends commands ---+--
	Process	
'-----------'		
'-----------------' | | | | .-------. | |
 | | .-----------. | | | Shove | | |
 | '-->|Shove Queue|----+- Reads commands -+->|Process|--+---'
 | '-----------' | | '-------' |
 '-----------------------' '-------------'

Security

There are a few features to point out when evaluating the security of Captain Shove:

	Commands are whitelisted by the procfile for each project, so only developers with commit access
to a project’s repository can specify a command to run.

	RabbitMQ includes access control features that allow you to restrict certain users to only be
able to read or write to certain queues. For example, Shove users should only be able to read
their own queues and write to the log queue, and the Captain user should only be able to read the
log queue and write to the Shove queues.

	Captain uses standard Django username/password authentication for the admin interface, and
Persona authentication for the user-facing side. Admins can create projects and grant permissions
(using the django-guardian [http://django-guardian.readthedocs.org/] library) to certain users to allow them to run commands on a
project.

Example Flow

The following is an example from start to finish of executing a command with Captain Shove:

	User logs into Captain via Persona.

	User enters a command named “pwd” into a form for the “Firefox Flicks” project and submits.

	Captain creates a log entry in it’s database for this submission.

	Knowing that Flicks is on the “generic” cluster, Captain sends a message to the queue for the
generic cluster that contains an order to run the “pwd” command on the “Firefox Flicks” project
as well as the ID of the log entry it created and the name of the queue it is listening for log
events on.

	The user sees a message confirming the command has been sent and will have to revisit the
page after the results are saved to be able to view the output.

	The Shove process on the generic cluster admin node, which has been listening on the generic
cluster queue, receives the message and looks up the directory for “Firefox Flicks” in it’s
configuration.

	Once it finds the directory, Shove reads in the procfile for Flicks and looks for a command
named “pwd”.

	When it finds the command, it takes the shell command listed in the procfile and spins off a
subprocess to execute the command.

	Shove waits for the command to finish and captures the output of the command, including any
errors, and the return code.

	Shove combines the output of the command, return code, and the ID of the log entry in Captain
into a log event message and sends it to the logging queue specified in the command from
Captain.

	The Captain logging process, which is listening on the logging queue, receives the logging
event and saves the output and return code to the log in the database specified by the log
entry ID.

Installing Captain and Shove

These instructions are for installing Captain and Shove in a production setup. If you want to
work on Captain or Shove as a developer, see the Contributing page.

Prerequisites

	Python 2.6 or 2.7

	A database (or use Django’s SQLite support)

	A running instance of RabbitMQ

Setting up Shove

Shove installs as a normal Python package. It’s not on PyPI yet, but you can install it using
pip [http://www.pip-installer.org/]:

pip install git+https://github.com/mozilla/shove.git#egg=shove

This should install the shove executable into your environment, which is used to start the
Shove daemon.

Shove requires a settings file; an example settings file [https://github.com/mozilla/shove/blob/master/settings.py-dist] can be found in the Shove source code.
The SHOVE_SETTINGS_FILE environment variable should contain an absolute file path to the
settings file you want to use.

The settings file contains details for connecting to RabbitMQ, as well as a mapping of project IDs
to directories that projects are contained in. You must edit this dictionary to include file paths
to any projects that you want Shove to be able to run commands for.

Setting up Captain

Captain is a Django [https://www.djangoproject.com/] project. It’s intended to be run as a WSGI [http://wsgi.readthedocs.org/] application. The WSGI file for
Captain is located at captain/wsgi.py under the repository root.

You can retrieve the code for Captain by cloning https://github.com/mozilla/captain.git using
git [http://git-scm.com/].

Dependencies

Captain comes with almost all of its dependencies included in the vendor directory, and
wsgi.py automatically alters the Python import path to include them. There are a few compiled
dependencies that aren’t included: They are specified in requirements/compiled.txt and can be
installed on your target system using pip [http://www.pip-installer.org/]:

pip install -r requirements/compiled.txt

Note

Alternatively, you can create system packages for the compiled requirements and have them
installed via a server automation framework like Puppet [https://github.com/puppetlabs/puppet].

Settings

Once you’ve installed the dependencies, you need to create a settings file by copying
captain/settings/local.py-dist to captain/settings/local.py and editing the contents:

cp captain/settings/local.py-dist captain/settings/local.py
vi captain/settings/local.py

The comments in the file and the Django settings documentation [https://docs.djangoproject.com/en/dev/ref/settings/] will help explain how to
configure the settings for your setup.

Database

Next, you must initialize the database using the syncdb and migrate commands:

python manage.py syncdb
python manage.py migrate

Static Content

There are two directories that need to be served up by a static webserver alongside Captain: the
static directory and the media directory. static contains all the static CSS,
JavaScript, and images for the site, while media contains the raw logs sent back from Shove.

The filesystem paths for these directories are configured by the MEDIA_ROOT and STATIC_ROOT
settings in the settings file, and default to being located at the root of the repositry. The
public-facing URLs for them are controlled by the MEDIA_URL and STATIC_URL settings, and
default to /static and /media.

Once you’ve configured these settings (if necessary), you must populate the static directory by
running the following command:

python manage.py collectstatic

This should fill static with files. Then you must use the web server of your choice to serve
these files alongside the rest of the Captain interface.

Finished!

After that, you should be ready to run the site via whatever WSGI-compliant web server you prefer.

Log Event Listener

Captain includes a command that listens for log events from Shove. After configuring Captain using
the steps above, you should be able to start the process with this command:

python manage.py monitor_shove_logs

Note

You should probably use a process control system like supervisord [http://supervisord.org/] to manage this
process as well as the Shove process.

Deploying a Project with Captain

So you want to execute commands for your project using Captain? Great! Assuming there’s an instance
of Captain running that you want to use, here’s how you add your project to it:

1. Add your commands to your project.

Captain works on the assumption that commands that projects want to run (such as deploying,
downloading new translations, etc.) are specified in the code for the project itself in a file
called bin/commands.procfile.

The file is in the same format as a Heroku Procfile [https://devcenter.heroku.com/articles/procfile#declaring-process-types], which specifies one command per line in
the following format:

mycommand: python myscript.py
anothercommand: python manage.py some_management_command
git_yolo: git commit -am "DEAL WITH IT" && git push -f origin master

Warning

Any syntax errors in the format will cause the command in question to not be
available.

Note

Commands from the procfile are executed in the environment that the Shove process is
running in. The current working directory for the command is set to the root of your project as
specified in the Shove configuration.

2. Setup and configure Shove to recognize your project.

If you haven’t already, set up an instance of Shove on the machine you want to run your commands on
using the directions in the Installation documentation.

In the Shove configuration file, add an entry to the PROJECTS setting with a name for your
project and the path to the directory where your project’s code is stored:

PROJECTS = {
 'myproject': '/data/www/myproject-web'
}

3. Create a project entry in Captain and grant permissions.

Next, a user with admin access to Captain should create a new Project entry. The project will need
the queue name for the Shove instance that will be running the command (found in the Shove
configuration) and the project name used as the key in the PROJECTS setting in Shove.

It’s a good practice to also create a user group using the admin interface and grant permission to
run commands on the project to that group. That way, you can just add users to the group instead of
granting permission to each individual user.

If you set up a group, you’ll need to add any users that want to run commands to that group.
Otherwise, grant permission directly to the users that need it. In either case, the link for
managing object permissions can be found on the detail page for the project in the admin interface.

4. Test running a command on the project.

Lastly, you’ll need to test running a command on the project by sending a command via Captain and
inspecting the output when the result returns. If no result is returned, this may indicate a
problem with how Shove was configured, and you should check the Shove output for any errors or
warnings.

It may be useful to add a test command like pwd to the procfile to test for errors in Shove as
opposed to errors in the command itself.

Controlling Permissions

Captain controls who can run commands on projects using project-level permissions. The interface
for these permissions is a link titled “Object Permissions” on the detail page of a project in the
admin interface.

Permissions can be assigned to individual users, or groups. It is recommended that you use groups,
as it’s easier to add a user to a group than to give permission to a user. Permissions can also be
revoked, or you can remove a user from a group if you’re using groups to manage permissions.

Contributing

Developer Setup

Prerequisites:

	Python 2.6 or 2.7

	pip [http://www.pip-installer.org/]

	virtualenv [http://www.virtualenv.org/]

	RabbitMQ [http://www.rabbitmq.com/download.html]

Note

While it is technically possible to work on Captain or Shove without RabbitMQ installed
for very small changes, it is highly recommended to install it anyway.

Once you have the prerequisites installed, you must set up the Shove daemon:

Clone the repository
git clone https://github.com/mozilla/shove.git
cd shove

Create a virtualenv and activate it
You should consider using virtualenvwrapper instead: http://virtualenvwrapper.readthedocs.org/
virtualenv venv
source venv/bin/activate

Install shove in development mode
python setup.py develop

Copy the settings file
cp settings.py-dist settings.py
You must edit settings.py with the settings for your setup! It is commented with info on what
you need to change.

Start the shove daemon.
shove

Once Shove is running, you must set up the Captain frontend:

Clone the repository
git clone https://github.com/mozilla/captain.git
cd shove

Create a virtualenv and activate it
You should consider using virtualenvwrapper instead: http://virtualenvwrapper.readthedocs.org/
virtualenv venv
source venv/bin/activate

Install libraries needed for development
pip install -r requirements/dev.txt

Copy the settings file
cp captain/settings/local.py-dist captain/settings/local.py
You must edit local.py with the settings for your setup! It is commented with info on what
you need to change.

Initialize the database
python manage.py sync
python manage.py migrate

Start the development server
python manage.py runserver

You should now have both Captain and Shove running and connected to RabbitMQ.

The last step is to start the Captain logging event process. The process listens for messages on
the logging queue and saves them to the database to update Captain with the results of a command.
To run it, run the following in a new terminal:

Enter the captain directory.
cd captain

Activate the virtualenv.
source venv/bin/activate

Run the logging daemon.
python manage.py monitor_shove_logs

Running the Tests

Enter the captain directory.
cd captain

Activate the virtualenv.
source venv/bin/activate

Run the tests.
python manage.py test

Changing the Database

Captain uses South [http://south.readthedocs.org/] to generate and run migrations for the database. The South documentation has
more information on how to generate and run migrations when the models change.

Make sure to check for new migrations whenever you pull new code!

Third-party Libraries

Third-party libraries for Captain are listed in pip requirements files in the requirements
directory. There are three files:

	prod.txt: Non-compiled libraries required for production.

	compiled.txt: Compiled libraries required for production.

	dev.txt: Libraries that are required for development (e.g. for running the tests). This also
pulls in the requirements from prod.txt and compiled.txt.

In addition, the libraries from prod.txt are also included in a directory called vendor.
This is used to import the libraries in a production environment where there isn’t a PyPI mirror
to install the libraries from.

If you add a new third-party library to Captain, make sure to add it to the appropriate
requirements file. If you add to or update prod.txt, you’ll also need to update vendor. This
can be done with using pip like so:

Executed from the repository root.
pip install -I --install-option="--home=`pwd`/vendor" library-name==1.2

Note

Make sure that any requirements in prod.txt are pinned to a specific version or
commit.

Where to Find Us

We hang out on IRC on irc.mozilla.org in #capshove.

Additionally, we’ll respond to issues in both the captain and shove projects.

Mozilla Public License Version 2.0

1. Definitions

	1.1. “Contributor”

	means each individual or legal entity that creates, contributes to
the creation of, or owns Covered Software.

	1.2. “Contributor Version”

	means the combination of the Contributions of others (if any) used
by a Contributor and that particular Contributor’s Contribution.

	1.3. “Contribution”

	means Covered Software of a particular Contributor.

	1.4. “Covered Software”

	means Source Code Form to which the initial Contributor has attached
the notice in Exhibit A, the Executable Form of such Source Code
Form, and Modifications of such Source Code Form, in each case
including portions thereof.

	1.5. “Incompatible With Secondary Licenses”

	means

	that the initial Contributor has attached the notice described
in Exhibit B to the Covered Software; or

	that the Covered Software was made available under the terms of
version 1.1 or earlier of the License, but not also under the
terms of a Secondary License.

	1.6. “Executable Form”

	means any form of the work other than Source Code Form.

	1.7. “Larger Work”

	means a work that combines Covered Software with other material, in
a separate file or files, that is not Covered Software.

	1.8. “License”

	means this document.

	1.9. “Licensable”

	means having the right to grant, to the maximum extent possible,
whether at the time of the initial grant or subsequently, any and
all of the rights conveyed by this License.

	1.10. “Modifications”

	means any of the following:

	any file in Source Code Form that results from an addition to,
deletion from, or modification of the contents of Covered
Software; or

	any new file in Source Code Form that contains any Covered
Software.

	1.11. “Patent Claims” of a Contributor

	means any patent claim(s), including without limitation, method,
process, and apparatus claims, in any patent Licensable by such
Contributor that would be infringed, but for the grant of the
License, by the making, using, selling, offering for sale, having
made, import, or transfer of either its Contributions or its
Contributor Version.

	1.12. “Secondary License”

	means either the GNU General Public License, Version 2.0, the GNU
Lesser General Public License, Version 2.1, the GNU Affero General
Public License, Version 3.0, or any later versions of those
licenses.

	1.13. “Source Code Form”

	means the form of the work preferred for making modifications.

	1.14. “You” (or “Your”)

	means an individual or a legal entity exercising rights under this
License. For legal entities, “You” includes any entity that
controls, is controlled by, or is under common control with You. For
purposes of this definition, “control” means (a) the power, direct
or indirect, to cause the direction or management of such entity,
whether by contract or otherwise, or (b) ownership of more than
fifty percent (50%) of the outstanding shares or beneficial
ownership of such entity.

2. License Grants and Conditions

2.1. Grants

Each Contributor hereby grants You a world-wide, royalty-free,
non-exclusive license:

	under intellectual property rights (other than patent or trademark)
Licensable by such Contributor to use, reproduce, make available,
modify, display, perform, distribute, and otherwise exploit its
Contributions, either on an unmodified basis, with Modifications, or
as part of a Larger Work; and

	under Patent Claims of such Contributor to make, use, sell, offer
for sale, have made, import, and otherwise transfer either its
Contributions or its Contributor Version.

2.2. Effective Date

The licenses granted in Section 2.1 with respect to any Contribution
become effective for each Contribution on the date the Contributor first
distributes such Contribution.

2.3. Limitations on Grant Scope

The licenses granted in this Section 2 are the only rights granted under
this License. No additional rights or licenses will be implied from the
distribution or licensing of Covered Software under this License.
Notwithstanding Section 2.1(b) above, no patent license is granted by a
Contributor:

	for any code that a Contributor has removed from Covered Software;
or

	for infringements caused by: (i) Your and any other third party’s
modifications of Covered Software, or (ii) the combination of its
Contributions with other software (except as part of its Contributor
Version); or

	under Patent Claims infringed by Covered Software in the absence of
its Contributions.

This License does not grant any rights in the trademarks, service marks,
or logos of any Contributor (except as may be necessary to comply with
the notice requirements in Section 3.4).

2.4. Subsequent Licenses

No Contributor makes additional grants as a result of Your choice to
distribute the Covered Software under a subsequent version of this
License (see Section 10.2) or under the terms of a Secondary License (if
permitted under the terms of Section 3.3).

2.5. Representation

Each Contributor represents that the Contributor believes its
Contributions are its original creation(s) or it has sufficient rights
to grant the rights to its Contributions conveyed by this License.

2.6. Fair Use

This License is not intended to limit any rights You have under
applicable copyright doctrines of fair use, fair dealing, or other
equivalents.

2.7. Conditions

Sections 3.1, 3.2, 3.3, and 3.4 are conditions of the licenses granted
in Section 2.1.

3. Responsibilities

3.1. Distribution of Source Form

All distribution of Covered Software in Source Code Form, including any
Modifications that You create or to which You contribute, must be under
the terms of this License. You must inform recipients that the Source
Code Form of the Covered Software is governed by the terms of this
License, and how they can obtain a copy of this License. You may not
attempt to alter or restrict the recipients’ rights in the Source Code
Form.

3.2. Distribution of Executable Form

If You distribute Covered Software in Executable Form then:

	such Covered Software must also be made available in Source Code
Form, as described in Section 3.1, and You must inform recipients of
the Executable Form how they can obtain a copy of such Source Code
Form by reasonable means in a timely manner, at a charge no more
than the cost of distribution to the recipient; and

	You may distribute such Executable Form under the terms of this
License, or sublicense it under different terms, provided that the
license for the Executable Form does not attempt to limit or alter
the recipients’ rights in the Source Code Form under this License.

3.3. Distribution of a Larger Work

You may create and distribute a Larger Work under terms of Your choice,
provided that You also comply with the requirements of this License for
the Covered Software. If the Larger Work is a combination of Covered
Software with a work governed by one or more Secondary Licenses, and the
Covered Software is not Incompatible With Secondary Licenses, this
License permits You to additionally distribute such Covered Software
under the terms of such Secondary License(s), so that the recipient of
the Larger Work may, at their option, further distribute the Covered
Software under the terms of either this License or such Secondary
License(s).

3.4. Notices

You may not remove or alter the substance of any license notices
(including copyright notices, patent notices, disclaimers of warranty,
or limitations of liability) contained within the Source Code Form of
the Covered Software, except that You may alter any license notices to
the extent required to remedy known factual inaccuracies.

3.5. Application of Additional Terms

You may choose to offer, and to charge a fee for, warranty, support,
indemnity or liability obligations to one or more recipients of Covered
Software. However, You may do so only on Your own behalf, and not on
behalf of any Contributor. You must make it absolutely clear that any
such warranty, support, indemnity, or liability obligation is offered by
You alone, and You hereby agree to indemnify every Contributor for any
liability incurred by such Contributor as a result of warranty, support,
indemnity or liability terms You offer. You may include additional
disclaimers of warranty and limitations of liability specific to any
jurisdiction.

4. Inability to Comply Due to Statute or Regulation

If it is impossible for You to comply with any of the terms of this
License with respect to some or all of the Covered Software due to
statute, judicial order, or regulation then You must: (a) comply with
the terms of this License to the maximum extent possible; and (b)
describe the limitations and the code they affect. Such description must
be placed in a text file included with all distributions of the Covered
Software under this License. Except to the extent prohibited by statute
or regulation, such description must be sufficiently detailed for a
recipient of ordinary skill to be able to understand it.

5. Termination

5.1. The rights granted under this License will terminate automatically
if You fail to comply with any of its terms. However, if You become
compliant, then the rights granted under this License from a particular
Contributor are reinstated (a) provisionally, unless and until such
Contributor explicitly and finally terminates Your grants, and (b) on an
ongoing basis, if such Contributor fails to notify You of the
non-compliance by some reasonable means prior to 60 days after You have
come back into compliance. Moreover, Your grants from a particular
Contributor are reinstated on an ongoing basis if such Contributor
notifies You of the non-compliance by some reasonable means, this is the
first time You have received notice of non-compliance with this License
from such Contributor, and You become compliant prior to 30 days after
Your receipt of the notice.

5.2. If You initiate litigation against any entity by asserting a patent
infringement claim (excluding declaratory judgment actions,
counter-claims, and cross-claims) alleging that a Contributor Version
directly or indirectly infringes any patent, then the rights granted to
You by any and all Contributors for the Covered Software under Section
2.1 of this License shall terminate.

5.3. In the event of termination under Sections 5.1 or 5.2 above, all
end user license agreements (excluding distributors and resellers) which
have been validly granted by You or Your distributors under this License
prior to termination shall survive termination.

	————————- *

	
	

	Covered Software is provided under this License on an “as is” *

	basis, without warranty of any kind, either expressed, implied, or *

	statutory, including, without limitation, warranties that the *

	Covered Software is free of defects, merchantable, fit for a *

	particular purpose or non-infringing. The entire risk as to the *

	quality and performance of the Covered Software is with You. *

	Should any Covered Software prove defective in any respect, You *

	(not any Contributor) assume the cost of any necessary servicing, *

	repair, or correction. This disclaimer of warranty constitutes an *

	essential part of this License. No use of any Covered Software is *

	authorized under this License except under this disclaimer. *

	
	

	————————– *

	
	

	Under no circumstances and under no legal theory, whether tort *

	(including negligence), contract, or otherwise, shall any *

	Contributor, or anyone who distributes Covered Software as *

	permitted above, be liable to You for any direct, indirect, *

	special, incidental, or consequential damages of any character *

	including, without limitation, damages for lost profits, loss of *

	goodwill, work stoppage, computer failure or malfunction, or any *

	and all other commercial damages or losses, even if such party *

	shall have been informed of the possibility of such damages. This *

	limitation of liability shall not apply to liability for death or *

	personal injury resulting from such party’s negligence to the *

	extent applicable law prohibits such limitation. Some *

	jurisdictions do not allow the exclusion or limitation of *

	incidental or consequential damages, so this exclusion and *

	limitation may not apply to You. *

	
	

8. Litigation

Any litigation relating to this License may be brought only in the
courts of a jurisdiction where the defendant maintains its principal
place of business and such litigation shall be governed by laws of that
jurisdiction, without reference to its conflict-of-law provisions.
Nothing in this Section shall prevent a party’s ability to bring
cross-claims or counter-claims.

9. Miscellaneous

This License represents the complete agreement concerning the subject
matter hereof. If any provision of this License is held to be
unenforceable, such provision shall be reformed only to the extent
necessary to make it enforceable. Any law or regulation which provides
that the language of a contract shall be construed against the drafter
shall not be used to construe this License against a Contributor.

10. Versions of the License

10.1. New Versions

Mozilla Foundation is the license steward. Except as provided in Section
10.3, no one other than the license steward has the right to modify or
publish new versions of this License. Each version will be given a
distinguishing version number.

10.2. Effect of New Versions

You may distribute the Covered Software under the terms of the version
of the License under which You originally received the Covered Software,
or under the terms of any subsequent version published by the license
steward.

10.3. Modified Versions

If you create software not governed by this License, and you want to
create a new license for such software, you may create and use a
modified version of this License if you rename the license and remove
any references to the name of the license steward (except to note that
such modified license differs from this License).

10.4. Distributing Source Code Form that is Incompatible With Secondary
Licenses

If You choose to distribute Source Code Form that is Incompatible With
Secondary Licenses under the terms of this version of the License, the
notice described in Exhibit B of this License must be attached.

Exhibit A - Source Code Form License Notice

This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.

If it is not possible or desirable to put the notice in a particular
file, then You may include the notice in a location (such as a LICENSE
file in a relevant directory) where a recipient would be likely to look
for such a notice.

You may add additional accurate notices of copyright ownership.

Exhibit B - “Incompatible With Secondary Licenses” Notice

This Source Code Form is “Incompatible With Secondary Licenses”, as
defined by the Mozilla Public License, v. 2.0.

Index

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		Welcome to Captain Shove's documentation!

 		Overview

 		Server Architecture

 		Captain

 		Shove

 		Communication Flow

 		Security

 		Example Flow

 		Installing Captain and Shove

 		Prerequisites

 		Setting up Shove

 		Setting up Captain

 		Dependencies

 		Settings

 		Database

 		Static Content

 		Finished!

 		Log Event Listener

 		Deploying a Project with Captain

 		1. Add your commands to your project.

 		2. Setup and configure Shove to recognize your project.

 		3. Create a project entry in Captain and grant permissions.

 		4. Test running a command on the project.

 		Controlling Permissions

 		Contributing

 		Developer Setup

 		Running the Tests

 		Changing the Database

 		Third-party Libraries

 		Where to Find Us

 		Mozilla Public License Version 2.0

 		1. Definitions

 		2. License Grants and Conditions

 		3. Responsibilities

 		4. Inability to Comply Due to Statute or Regulation

 		5. Termination

 		8. Litigation

 		9. Miscellaneous

 		10. Versions of the License

 		Exhibit A - Source Code Form License Notice

 		Exhibit B - “Incompatible With Secondary Licenses” Notice

_static/comment.png

_static/minus.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/file.png

_static/plus.png

_static/down.png

_static/up.png

_static/comment-close.png

_static/comment-bright.png

